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ABSTRACT 

CITEFINDER: A SYSTEM TO FIND AND RANK 

MEDICAL CITATIONS 

by 

Soheil Moosavinasab 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Dr. Rashmi Prasad 

 

This thesis presents CiteFinder, a system to find relevant citations for clinicians’ written 

content. Inclusion of citations for clinical information content makes the content more 

reliable through the provision of scientific articles as references, and enables clinicians to 

easily update their written content using new information. The proposed approach splits 

the content into sentences, identifies the sentences that need to be supported with 

citations by applying classification algorithms, and uses information retrieval and ranking 

techniques to extract and rank relevant citations from MEDLINE for any given sentence. 

Additionally, this system extracts snippets from the retrieved articles. We assessed our 

approach on 3,699 MEDLINE papers on the subject of “Heart Failure”. We implemented 

multi-level and weight ranking algorithms to rank the citations. This study shows that 

using Journal priority and Study Design type significantly improves results obtained with 

the traditional approach of only using the text of articles, by approximately 63%. We also 

show that using the full-text, rather than just the abstract text, leads to extraction of 

higher quality snippets.
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1-1 Motivation 

Providing clinical information is a very important but also a very sensitive matter because 

it deals with people’s health. A mistakenly advised drug or medical recommendation can 

irreparably harm the patient. Therefore, clinicians must be cautious about the sources that 

they take the information from to avoid misplaced decision-making. 

Written materials are one of the primary sources of learning and transfer of knowledge. 

When we talk of scientific text, reliability of information is a critical issue. However, the 

more well-documented the information is, the more chance there is for the audience to 

trust the information and use it. One way to include documentation of evidence with 

information presentation is to include citations to documents that constitute the source of 

the information. Such documentation adds value to the evidence-based content that may 

otherwise suggest risk of jeopardizing patient health through misinformation. 

Supporting textual information with documented evidence is crucial for resources such as 

UpToDate
®1

 and PubMed Central
®2 

that are meant to be used by clinicians and experts. 

On the other hand, in typical clinical resources such as WebMD
®3

, Cleveland Clinic
4
 and 

Medline Plus
®5

 that are designed for non-expert users such as patients, families, and 

health care providers, users can benefit from the enriched text linked to the citations and 

get more detailed information about the medical information, including the underlying 

research or case studies that serve as the basis for the information. As an example, 

although Medline Plus does not include citations for sentences, it lists global references 

                                                           
1
 http://www.uptodate.com 

2
 http://www.ncbi.nlm.nih.gov/pmc 

3
 http://www.webmd.com/ 

4
 http://my.clevelandclinic.org/ 

5
 http://www.nlm.nih.gov/medlineplus/ 



www.manaraa.com

3 
 

 
 

for each article at the end of the text as a way to provide users the opportunity to gather 

more information if they so desire. 

Furthermore, although the language and information provided in non-expert based 

healthcare websites are simple, rudimentary and easily readable by non-experts, the 

enriched version of the same content can encourage more groups of people such as both 

experts and non-experts to use them. 

The importance of enriching the text with citations is so great that even collaborative 

sources such as Wikipedia ® support their context by adding references to the sentences 

[1]. 

The primary contribution of this thesis is a system, known as CiteFinder, to find citations 

for clinical text. We suggest sources that support clinicians’ text, help them to verify their 

thoughts and findings, and also collect new ideas about the topics they are working on. A 

system such as CiteFinder will help in transforming the expert-based content paradigm (a 

paradigm not used by certain clinical knowledge systems such as UpToDate© [2], but 

relatively common among geographically close care providers [3]) to evidence-based 

medicine – the accepted paradigm [4]. Presenting potential citations to clinicians gives 

them the flexibility to easily author evidence-based guidance and FAQs for their peers. 

Furthermore, it would also be extremely helpful to add citations to information content 

that was written at a time when no supporting literature existed but that became available 

over time. Filling these evidential gaps in existing clinical text would be of enormous use 

to clinicians and the community at large. In other words, the use of the CiteFinder system 
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is not limited to finding citations for a new article being written – it can also assist in 

keeping existing articles updated. 

1-2 System Architecture 

Figure 1 illustrates the architecture of our CiteFinder system. The system is implemented 

as an Ajax based online tool that allows a user to submit some clinical text and receive 

back the top relevant citations for candidate sentences in the input text. CiteFinder 

consists of two major components: sentence selection and citation assignment. The 

citation assignment component itself contains four subcomponents: sentence expansion, 

citation extraction, citation ranking, and snippet generation, which are each in turn 

applied on the selected sentences. We briefly describe the function of each of the 

components below. 
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Figure 1: CiteFinder System Architecture. 

The figure illustrates the sentence selection, sentence expansion, citation extraction, citation ranking, and 

snippet generation components and their integration with resources and the user-interface. 

 

 



www.manaraa.com

6 
 

 
 

Sentence selection is the first component that processes the text submitted by the author. 

Since not all authored sentences are based on content drawn from some external 

source(s), the first task, therefore, is to identify the sentences whose content does depend 

on some external source(s) and for which external articles need to found and cited as 

documentation of evidence. For this, we use the Naïve Bayes binary classification 

algorithm, which classifies a sentence as either one needing a citation (+citation) or as 

one not needing a citation (-citation). Only +citation sentences are then passed on to the 

next component for citation assignment. An advantage of the sentence selection step in 

our approach is that the text resulting after the assignment of citations will be more 

readable and natural, with fewer false positives. 

Sentences selected by the sentence selection component are sent for citation assignment, 

where each sentence is first expanded (Sentence expansion) by normalizing lexical 

variations, adding MeSH
®
 (Medical Subject Headings) terms and abbreviation 

expansions to extend the word-based search scope for citations. Such expansion of the 

sentence allows the citation extraction component to retrieve additional relevant 

documents, thereby increasing recall, which in turn will enhance ranking during citation 

ranking, and eventually lead to the generation of more relevant snippets. 

Sentence expansion is followed by citation extraction, which involves finding relevant 

citations for the candidate sentence, from our collection of MEDLINE
®
 articles (see 

Section 1-3). To find relevant citations, MeSH terms are used. MeSH is a controlled 

vocabulary thesaurus created by the National Library of Medicine
®
 (NLM) for the 

purpose of indexing and searching the content of MEDLINE articles. This enables 
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retrieval systems (e.g., PubMed
1
) to provide subject searching of the data.

2
 The citation 

extraction component extracts MeSH terms from the sentence and searches for them 

among the MeSH terms of each indexed MEDLINE article. We retrieve articles that have 

at least one MeSH term in common with the sentence. We used the open-source Apache 

Lucene software
3
 for indexing, search and retrieval. 

Articles identified through MeSH search are then ranked by the citation ranking 

component, based on four measures: text search, MeSH search, journal prioritization, and 

epidemiological study design recognition [5]. We trained a system to give weights to 

each measure for full text MEDLINE articles and obtained the formula below to rank the 

articles based on the calculated score: 

       (                     )   (                                   )

  (                                     ) 

Citation ranking overcomes a common problem underlying most IR systems, namely that 

they retrieve an enormous number of articles. Ranking the retrieved documents spares 

users from combing through the less relevant results of the search. In addition, however, 

ranking of the retrieved results is crucial for a system such as ours, where the goal is not 

just to rank the articles but also to remove the less relevant articles. In our system, only 

the top 3 citations from the ranked retrieval results are returned to the user. 

The final step of citation assignment involves producing snippets for the retrieved 

citations. A snippet is a small portion of the content that gives the user brief information 

about the retrieved document. In general, snippets can contain text summaries, image 

                                                           
1
 http://www.ncbi.nlm.nih.gov/pubmed/ 

2
 http://www.nlm.nih.gov/mesh/intro_retrieval.html 

3
  https://lucene.apache.org 

http://www.nlm.nih.gov/mesh/intro_retrieval.html
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thumbnails, hyperlinks, dates, names, etc., in different fonts and formats. In our system, 

we generate snippets containing the title, the article URL, and a portion of the text of 

retrieved articles to show how the article provides good support for the sentence. Figure 2 

shows a sample input text submitted by a user and cited output text along with list of 

references and snippets for them. 
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Figure 2: Demonstration of the user interface for CiteFinder system. 

The system finds citations for some sentences that need citations to support them and creates a list of 

citations at the end. 
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Since the goal of the system is to show snippets to the users and provide them the 

opportunity to accept or reject the citations, articles with no extracted snippets are 

removed in this step. We analyzed abstract-based and full text-based production of 

snippets and evaluated the value of obtaining snippets not only from the abstracts, but 

also from the full text of the articles. 

1-3 Evaluation Resources 

Primary Gold Standard Corpus. For evaluating a system such as CiteFinder, what is 

needed is an existing resource of clinical informational text that (a) is written by human 

experts and (b) has citations provided (by human experts) for sentences, where needed as 

shown in Figure 3. 

 

Figure 3: Sections of the UpToDate website. 

The figure shows the text is supported with references for some sentences. 
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 Sentences from such a resource can then be used as training and evaluation data for 

developing a method. In our work, we used UpToDate to create our primary gold 

standard corpus. UpToDate is an evidence-based, clinical decision support website which 

contains articles written by more than 5,100 physician authors, editors and peer 

reviewers
1
. Our reasons for choosing this resource as our gold standard were as follows. 

First, UpToDate is used by more than 700,000 clinicians from 158 countries, which 

shows that the information contained therein is regarded as highly reliable. Second, 

unlike many other clinical information sites, UpToDate includes citations in the articles 

at the sentence-level, where needed, instead of global citations for the article as a whole. 

This makes the data more conducive for our task evaluation. Finally, UpToDate articles 

and citations are updated on a regular basis by experts, thus reflecting the most recent 

status of the articles vis-à-vis current MEDLINE articles. 

In this study, we selected “Heart Failure” topic as a representative of topics in the clinical 

domain. We obtained articles and journals, tested methods, and evaluated them in heart 

failure. 

HTML files from UpToDate were obtained by downloading 150 articles retrieved with 

the query “heart failure”. The content and citations were extracted from the HTML files 

by taking the text from the targeted sections using an HTML parser. Then a simple rule-

based sentence splitter algorithm was applied to the text to delimit sentences, and two 

sets of sentences were created for our task: one containing sentences with one or more 

citations (i.e., sentences “needing citations”, or +citation sentences) and the other 

containing sentences with no citations (i.e., sentences “not needing citations”, or –citation 

                                                           
1
 http://www.uptodate.com/home/about-us 
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sentences). The final corpus created this way includes a total of 34321 sentences, with 

7,757 sentences “needing citations”, with citations to 11,793 articles, and 24,089 

sentences “not needing citations”. 

Reference Article Collection. To find citations for the sentences in our corpus, we 

collected source articles comprising 3,699 articles on Congestive Heart Failure (CHF), 

from two major sources: 

 3,166 articles retrieved with the query “Congestive Heart Failure[MeSH Major 

Topic]” at PubMed Central 

 533 articles retrieved with the query “Congestive Heart Failure[MeSH Major 

Topic]” at PubMed on two top ranked journals for CHF topic. The articles are 

downloaded from the journal web sites directly: 

o JAMA the Journal of the American Medical Association 

o The New England Journal of Medicine 

Since some articles in these two journals might also exist in PubMed Central, we 

removed duplicated articles and retained only one version of each. Also, documents for 

which only scanned versions were available were removed from the collection. In 

addition, we collected only those articles for which both the abstract and full text were 

available, in order to enable evaluation of our “full text-based” and “abstract-based” 

document retrieval algorithms. Both the abstract and the full-text of articles are indexed 

separately with Lucene to allow us to compare how our system performs in snippet 

generation task by searching over abstracts on the one hand and full-texts on the other. 
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1-4 Thesis Organization 

The rest of this thesis is organized as follows. In chapter 2, we discuss related work on 

sentence classification (to identify sentences needing citations), citation finding systems, 

snippet generators, and ranking methods. Chapter 3 describes the sentence selection 

component, including the methods and evaluation results. Chapter 4 describes the citation 

assignment component, including its subcomponents for sentence expansion, citation 

extraction, citation ranking, and snippet generation. Methods and evaluation for this 

component are also discussed here. In chapter 5, we review the sources of errors and 

difficulties with the task and discuss conclusions and suggestions for future work.
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2-1 Introduction 

In this chapter, we provide a review on studies relevant to this thesis. We report related 

studies and discuss our innovations for each of the sentence selection, sentence 

expansion, citation extraction, citation ranking, and snippet generation components. 

2-2 Sentence Selection 

Although there exists research on sentence selection for extraction-based summarization 

tasks [6]–[9], we are not aware of any research on sentence selection for citation finding. 

In work related to summarization, Yihong Gong et al [8] use traditional IR methods along 

with latent semantic analysis techniques for text summarization in the general domain. 

Ronald Brandow et all [6] also applied tf-idf approach on news publications to identify 

signature words and then used several factors to select sentences, including presence of 

signature words in the sentence, location of the sentence in the document, and other 

summarization related factors. Goldstein et all [7] also studied the task of summarizing 

news articles. They used statistical and linguistic features to score sentences. Statistical 

features include cosine similarity, tf-idf weights, pseudo-relevance feedback [10], query-

expansion, and methods that eliminate text-span redundancy such as Maximal Marginal 

Relevance. Linguistic features are quotations, honorifics, and thematic phrases in this 

study.  Daniel McDonald et all [9] implemented TXTRACTOR tool which generates 

summaries that contain user-defined number of sentences. Unlike most of the sentence 

selection tasks in summarization that rank sentences to select them [6]–[8], we trained a 

binary classifier using machine learning techniques to identify “needing citations” or “not 

needing citations” sentences. 
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Sentiment analysis is another task that uses sentence classification approach to classify 

opinions in a sentence. Peter D. Turney [11] studied classification of reviews on the 

internet as recommended (thumbs up) or not recommended (thumbs down). He calculates 

the semantic orientation of a phrase by considering the value of mutual information 

between the given phrase and the word "excellent" minus the mutual information 

between the given phrase and the word "poor". If the average semantic orientation of all 

the phrases is positive, the review will be classified as positive. Bo Pang et all [12] 

studied the same task on multi-class text classification instead of binary classification. In 

another study [13], they used machine learning algorithms and combined the sentiment 

analysis and summarization tasks to obtain sentences with specific sentiments in 

documents. 

Classifying the rhetorical function of a sentence is another task that has been studied in 

some depth. Simone et al [14] at first identify all the sentences that contain any rhetorical 

role. Then they classify identified sentences according to their rhetorical role. 

Our work is the first for designing a sentence selection algorithm to find sentences which 

need citations, specifically in the clinical domain. Although most of the systems apply 

sentence selection algorithms in generic or news-related field [6]–[9], Larry et al [15] 

worked on the sentence classification task in the clinical domain to classify sentences 

functionally in terms of the major functional sections of articles, namely, Introduction, 

Method, Result, and Conclusion; but not on citation needing classification yet. 

2-3 Citation Extraction and Ranking 
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Publication finding in digital libraries and on the web has been investigated to 

recommend relevant papers to researchers [16]–[20]. There are also studies on 

information retrieval in the medical domain. For example, Plaza and Diaz [21] proposed 

a method to query similar Electronic Health Records using UMLS concepts. Hersh and 

Hickam [22] studied the effectiveness of electronic information retrieval systems for 

physicians. Lu [23] investigated web tools for searches in the biomedical literature. 

Bachmann et al [24] proposed and validated search strategies used to identify diagnostic 

articles recorded on MEDLINE, with special emphasis on precision. Bernstam et al [25] 

studied how citation-based algorithms that are developed to extract relevant and 

important citations for the World Wide Web are useful in the biomedical literature 

domain. They compared eight citation algorithms, including simple PubMed queries, 

clinical queries, citation counts, journal impact factors, etc. Their research concluded that 

these citation-based algorithms are useful in the domain of biomedical literature. Lin et al 

[26] extracted relevant MEDLINE citations and ranked them based on several ranking 

methods, including citation counts per year and journal impact factors. Darmoni et al [27] 

used MeSH concepts for indexing and information retrieval. Some studies have also been 

conducted on query expansion using MeSH terms in PubMed. Lu et al [28] analyzed the 

effect of using MeSH terms in a PubMed automatic search. In the current study, we also 

used MeSH concepts to find relevant citations. 

Simone et al [29] designed a machine learning framework to automatically classify 

function of a citations in 12 categories such as weakness, neutrality, and contrast or 

comparison, and agreement of the work. In other study [30] they implemented a multi 

classifier for identifying scientific attributions to improve discourse classification task. 
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They identify whose work is being talked about in the discourse. Current-Paper and No-

Specific-Paper are two referents that they identify. 

Some work has been done to retrieve articles form MEDLINE. Siddhartha et al [31] 

studied the information retrieval and semantic information extraction techniques to 

extract topic-relevant sentences from MEDLINE abstracts for clinician’s queries. 

Sneiderman et al [32] introduced three knowledge based systems that help the clinicians 

to find answers for questions in MEDLINE. DingCheng et al [33] implemented a three 

step system for assigning references to expert-written content. They only studied the task 

on MEDLINE abstracts, not full text articles as our system does. They also have not 

automated the evaluation of the system but rather, selected the gold standard manually. In 

addition, adding text and MeSH search in our study shows improvements in the ranking 

results (the median rank on their study was 45 while it is 4 in our system).  

2-4 Snippet generation 

Many studies have been done on snippet generation in information retrieval in the web 

environment. Qing Li et all [34] discussed statistical language models to identify certain 

personalized patterns for snippet extraction. Other studies are available that discuss 

automatic snippet extraction techniques along with storage and efficiency optimizations 

[35]–[38]. In this study, we simply created a query of words, MeSH terms and expanded 

abbreviations and used Lucene’s proximity search algorithm to find snippets.
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3-1: Motivation 

In any given clinical informational text, there will be some sentences that need citations 

to support the text while other sentences don’t. Our study on expert-written articles in 

UpToDate shows that on average, 19.96% of the sentences in an article need at least one 

citation. The process of sentence selection is useful for citation finding as it filters out 

sentences that don’t need citations. Sentences classified as “needing citations” by the 

sentence selection component will be used as input to the citation assignment component, 

leading to faster, more accurate, and more realistic results. 

To understand and characterize the reasons for why a given sentence may not need 

citations, we carried out a study of 4 articles (total of 1,250 sentences) from our corpus. 

While not necessarily exhaustive, the characterization is intended to illustrate the range of 

sentence types that can be clearly identified as not needing citations. In addition, the 

study enabled us to develop features for the classification task. In the categorization 

below, sentence types that may plausibly require citations over time with the generation 

of new literature are marked as [inconstant] while others are marked as [constant]. One of 

the salient observations we made from the study was that certain word or phrase patterns 

are highly indicative of the sentence type in general. For each example sentence provided 

below for the sentence types, we have highlighted such indicative words and phrases in 

boldface. 

 Text Organization [constant]: These include sentences that are used to 

structure the text to make it coherent for the reader. Since they are not primarily 

intended to present information, such sentences typically don’t require any citations. 
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Examples: 

  “The following discussion will emphasize the therapeutic approach to the 

patient with chronic HF.” 

 “Two major findings were noted:” 

 “These issues are discussed in detail separately.” 

 Opinions [constant]: These sentences express findings or thoughts of the 

authors of the text. As such, we don’t expect such sentences to contain citations to 

other sources. 

Examples: 

  We prefer to avoid nonsteroidal anti-inflammatory medications 

(NSAIDs) in elderly trauma patients. 

 “We also believe it is reasonable to use a pulse of 90 or above as the 

threshold defining tachycardia, which may be a sign of hemorrhage or 

significant injury warranting careful investigation.” 

 “We believe that clinicians should choose one of the beta blockers of 

proven benefit (including reduction in all-cause mortality) in randomized 

trials (ie, carvedilol, extended-release metoprolol succinate, or 

bisoprolol).” 
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 Internal references [constant]: These include sentences that refer to 

statements, sections, figures, tables, etc., within the article, and therefore don’t need 

to cite external sources. 

Examples: 

 “(See 'Diuretics' below.)” 

  These studies are listed in the text. 

 “Measures of this property include (figure 7):” 

 No study exists [inconstant]: These include sentences where the authors of 

the article explicitly state that there (currently) exists no work (or not enough work) 

on the topic in question. 

Examples: 

 There are not enough data at present to recommend cardiac 

rehabilitation for patients with advanced HF. 

 There is no clear definition of geriatric trauma; in this topic, we include 

patients over 65 years. 

 There is no evidence to support firm guidelines, and the frequency and 

intensity of reevaluation will vary depending upon the baseline health of 

the patient, the clinical scenario, and available resources. 

 Questions [constant]: These include questions posed by authors and, 

therefore, don’t constitute information from external sources. 
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Examples: 

 What medications is the patient taking (eg, anticoagulant, antiplatelet, 

beta blocker, calcium channel blocker)? 

 What was the patient's baseline level of motor and cognitive function 

prior to the traumatic event? 

 What underlying illnesses does the patient have (eg, cardiovascular or 

renal disease, diabetes)? 

 Suggestions [constant]: These include advice and suggestions given by 

authors. Therefore the sentences represent newly generated content and do not need 

citations. 

Examples: 

 We suggest that trauma patients over the age of 70 be evaluated at a 

trauma center whenever possible, regardless of the mechanism of injury. 

 We encourage you to print or e-mail these topics to your patients. 

 For patients with current or prior HF and an LVEF <=40 percent, we 

recommend therapy with a beta blocker (Grade 1A). 

 Future work [inconstant]: These include sentences describing ideas to 

expand the current study in the future. Such sentences indicate that the authors have 

themselves searched the state of the art publications and have not found any relevant 

articles to demonstrate the work. Therefore there is no need to search for citations at 
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the current time, although relevant supporting articles may appear in the future 

literature as and when the corresponding studies are conducted and published.  

Examples: 

 Further study is needed to better define the potential role of 

inflammation and associated alterations in DHF. 

 Findings [constant]: These include authors’ new observations, findings, 

and reported information. Since such information is generated exclusively by the 

authors of the article, citations for such sentences are not required. 

Examples: 

 We obtain basic laboratory studies in elder trauma patients with known or 

at significant risk for major injuries. 

 Given these considerations, we start with a low dose of an ACE inhibitor 

(eg, lisinopril 5 mg/day), increase to a moderate dose (eg, lisinopril 15 to 

20 mg/day) at one to two week intervals, and then begin a beta blocker, 

gradually increasing toward the target dose or, if this cannot be achieved, 

the highest tolerated dose. 

 We believe that clinicians should choose one of the beta blockers of 

proven benefit (including reduction in all-cause mortality) in randomized 

trials (ie, carvedilol, extended-release metoprolol succinate, or bisoprolol). 
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3-2 Gold Standard 

We trained a binary classifier to identify which sentences need citations and which don’t. 

For training and evaluation of the classifier, we chose a subset of the gold standard data, 

with equal numbers of positive and negative instances, in order to avoid classification 

bias due to the highly unbalanced distribution of the data: 

 +citations (positive instances): Randomly selected 4000 (out of 7,757) sentences 

from the “needing citations”  set of sentences in primary gold standard corpus 

 -citations (negative instances): Randomly selected 4000 (out of 24,089) sentences 

from the “not needing citations” set of sentences in primary gold standard corpus 

3-3 Methods 

As the first step, we split the given text into sentences using a simple rule-based java 

sentence splitting algorithm. Splitting the text into sentences gives us the ability to treat 

each sentence as an independent query for sentence selection and citation assignment. 

Each sentence is then pre-processed (Section 3-3-1) to remove noise and enforce 

normalization.  Machine learning algorithms are then applied (Section 3-3-2) for training 

the classifier. We experimented with different algorithms and explored various features 

and feature combinations. As shown in our results in Section 3-4, the best results for this 

task are obtained with a Naïve Bayes classifier, with the best feature being the top 6000 

of the most frequent words. 
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3-3-1 Pre-processing 

Machine learning is highly dependent on consistency in the input data, for which 

removing noise and enforcing normalization, where possible, is an important step. Each 

sentence in the gold standard data was pre-processed for the following:  

 Character normalization: Unconventional characters and symbols are converted 

to machine readable forms, specifically: 

o ± → +- 

o — → - 

o ≤ → <= 

o ≥ → >= 

o β → b 

 Number normalization: Since numbers don’t contribute to discrimination for this 

particular sentence classification task, all numbers are normalized by substituting 

them with the same number (“99999”). 

3-3-2 Classification 

We used the Weka© [39] 3.6 workbench to apply classification algorithms on the gold 

standard. Weka is a freely available suite of machine learning tools for data mining and 

data analysis tasks. Weka accepts Attribute-Relation File Format (ARFF) files as input, 

with each instance described as a set of attributes. We explored combinations of different 

features as attributes, values for which were automatically extracted from the gold 

standard sentences. Training and testing was done using 5-fold cross validation.  
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Features 

Here we describe the features we used for the sentence classification task, including how 

they were obtained: 

 All words: Words were obtained after applying tokenization. Tokenization was 

done by simply using the white space as a delimiter. A list of all words occurring 

in the corpus was used to create features indicating whether a word in the list 

occurred in the sentence or not. 

 Stemmed words: Stemmed versions of words were obtained with the Porter 

stemmer [40], and a similar process as above was used to create features for the 

stemmed words. 

 Words with stop words removed: Stop words are very commonly occurring 

function words (e.g., the, a, an, of, for, etc.) that are often removed in 

classification tasks when words are used as features. Their removal is found to 

improve system speed, efficiency and performance in many cases. We used a list 

of 119 stop words obtained from text fixer
1
. The same process as above was 

applied to create features after stop words were removed from the sentences. 

 MeSH terms: We wanted to explore if certain MeSH terms could be more 

indicative than others for whether the sentence needs a citation or not. We 

extracted MeSH terms in the sentences and created a list of all the MeSH terms in 

the sets. Existence or lack of existence of each MeSH term then defines this 

                                                           
1 http://www.textfixer.com/resources/common-english-words.txt 

http://www.textfixer.com/resources/common-english-words.txt
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feature. The details about what is MeSH term and how we extracted them are 

discussed in Chapter 4, Section 4-2. 

 Number of words in a sentence: The number of words occurring in the sentence 

was used as a feature, although, since the average number of words in +citation 

sentences and –citation sentences did not show much of a difference, we 

hypothesized the contribution of this feature to be weak at best. 

 Length of the sentence: The length of the sentence reflects the total number of 

characters in the sentence, but again, for the same reason as above, we deemed the 

contribution of this feature to be weak. 

 Patterns: Based on a study of a portion of the data, we collected patterns that 

recurred in one or the other type of sentences. For example, sentences starting 

with the “(see” phrase were often found to be –citation sentences. 

 Word N-grams: We explored the impact of word N-grams (n = 2 to 5) as a 

feature. We used N-grams and combinations of N-grams in two ways, one using 

all words, and another using words after removing stop words.  

 Number of semantic role relations: A semantic role is the underlying 

relationship that an entity has with the main verb in a sentence. SemRep [41] is a 

Natural Language Processing tool designed by National Library of Medicine that 

extracts semantic predications (subject-relation-object triples) from biomedical 

text using underspecified syntactic analysis and structured domain knowledge 

from the UMLS. We used SemRep to determine the number of semantic relations 
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appearing in a sentence and used this as a feature, to explore the idea that the 

more complex a sentence, the more likely it may be to require a citation. 

 POS tags: We parsed all sentences using the Stanford Parser 3.2.0 [42] and 

extracted word POS tags, using them as a feature. For this feature, words were 

used in their bare form and stop words were not removed. 

 N-grams of POS tags: We used the same method used for word N-grams to 

collect POS N-grams. 

Feature selection 

After generating the features, we tested using only the features which appeared the most. 

We selected top 300, 100, 2000, and 6000 features in each test to study the improvements 

with feature selection. 

Feature selection in helpful in the classification system for several reasons: 

1. Improves the results: Feature selection usually leads to performance 

improvements by selecting valuable features and removing noisy features. 

2. Avoids overfitting: Overfitting occurs when the classifier makes an incorrect 

generalization because it also considers noise in the data instead of just the 

essential features. Feature selection increases the chance of removing noise and 

therefore reduces the possibility of overfitting. 

3. Makes using of all classifiers feasible: If the size of the training data is too large, 

it may become impractical to run the classifier because of memory limitations on 
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the computer. Feature selection reduces the size of the training data by choosing 

only the important features so that the data can be processed by the system. 

4. Increases the speed: Even if the system is able to handle the training data, feature 

selection will reduce the training time by reducing the number of features. 

Algorithms 

We conducted experiments with seven different classification algorithms in Weka to 

determine which would work best for the sentence selection task: 

 Naïve Bayes 

 SVM 

 Decision Stump 

 Random Forest 

 MultiBoostAB 

 Conjunctive Rule 

In addition to the above algorithms, we considered using SMO, KStar and Decision Table 

too, but decided against them eventually because they were too slow. The results in Table 

1 show that Naïve Bayes, with an average F score of 0.709, is the best algorithm for the 

sentence selection task. 

Naïve Bayes classifier is a supervised learning algorithm adapted from Thomas Bayes' 

theorem. In this theory, features are assumed to be independent of each other such that 

the presence or absence of a particular feature in a class is assumed to be unrelated to the 
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presence or absence of any other feature in the class. The advantage of Naïve Bayes 

classifier is its simplicity, computational efficiency, and reasonable classification 

performance. 

The Bayes’ rule indicates that the probability of a document “d” being in a class “c” is: 

 (   )  
 (   ) ( )

 ( )
 

Where 

P(c|d) is the posterior probability of class c to be chosen for the given document.  

P(c) is the prior probability of the class.  

P(d|c) is the probability of document d to belong in class c.  

P(d) is the prior probability of the document. 

So we calculate the Maximum Posteriori Hypothesis (MAP) for each class using the 

following formula: 

            
 (   ) ( )

 ( )
                

We remove P(d) from the equation because its value is constant. 

             (   ) ( )                

If we imagine document “d” consists of terms such as {x1, x2, …, xn}, the equation can be 

replaced by: 

             (            ) ( )                
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Now, if we apply the Naïve Bayes independence assumption, we can imagine that the 

probability of observing the conjunction of words is equal to the product of the individual 

probabilities: 

 ((            )   (    )   (    )     (    ) 

Therefore we can use the formula below: 

             ( )∏ (    )

 

   

                

Where, 

 (    )   
                                              

                          
 

 

3-4 Results 

As discussed in the methods section, we trained and tested on the gold standard sentences 

using Weka classifiers and got the best results with the Naïve Bayes algorithm and the 

“bag of words” feature. 

3-4-1 Evaluation metrics 

We use standard Precision, Recall and F-1 measures to evaluate the results. Precision 

(also known as positive predictive value) is the proportion of returned instances that are 

relevant. High precision means that the system identified more relevant instances than 

irrelevant [43]. 
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In other words, we can calculate precision by True Positive (TP), and False Positive (FP) 

values: 

          
  

     
 

Using only precision in the evaluation will reveal how relevant the retrieved results are, 

but it will not give us any information about how comprehensive the results are. For 

example, if the system only returns one TP instance, the precision will be maximum, but 

it ignored the many more instances that the system should have correctly returned (i.e., 

the False Negatives). We use recall in our evaluation to account for such errors. 

Recall (also known as sensitivity) is the proportion of relevant instances that are returned. 

High recall means that most of the relevant instances are returned by the algorithm [43]. 

       
                                          

                    
 

Recall can be calculated as the portion of True Positives and False Negatives (FN) that 

are TP. 

       
  

     
 

Considering only recall in the evaluation can lead to misleading results as well. If the 

system returns all the instances regardless of their relevance, the recall will be maximum. 

This is because the recall metric does not consider false positive cases in the evaluation.  
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A metric that balances Precision and Recall is more desirable. For this, we use the F-1 

score which provides the harmonic mean of Precision and Recall. The value of the F-1 

score (or simply f score) lies between 0 and 1, and is calculated as follows: 

      
                

                
 

We used the 5-fold cross-validation evaluation method to partition the data, and use 

Macro-average rather than Micro-average for the F score. Macro-average F scores are 

calculated by first calculating the F score for each class and then taking the average of 

these. On the other hand, Micro-average scores aggregate the TP, FP, and FN for all the 

classes and then calculate the precision, recall, and F-1 scores. Because the F-1 metric 

does not consider true negatives (TN) and its score is mostly affected by true positives, 

large classes control the result more than small classes in micro-averaging. Macro-

averaging is a better evaluation metric in our system because it gives equal weight to 

every class (class-pivoted measure) while micro-averaging gives equal weight to each 

sentence classification decision (it is called a document-pivoted measure) [43]–[45]. 

3-4-2 Algorithm Selection 

We chose 5 candidate features to study the impact of different algorithms on our gold 

standard and then chose Naïve Bayes as the best algorithm for sentence selection task, 

based on the results. The 5 specific features were selected because we considered them to 

be most representative of all the features and because they are also generally found to be 

used in other classification tasks. Table 1 shows the results obtained with different 

algorithms. Precision, recall and F-1 measures are listed in three rows, respectively, in 

each cell of the table. This experiment for comparing classification algorithms was 
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performed using only the top 1000 features. The impact of feature selection itself is 

discussed later in section 3-4-3. 

Table 1: Results for sentence classification with different algorithms and 1000 top features 

 1 5 9 9 14 Average 

              

Features 

 

Algorithms 

All Words MeSH 

terms 

1 + Patterns Bigram of 

words 

POS  

Naïve Bayes 0.753 

0.749 

0.748 

0.604 

0.603 

0.603 

0.752 

0.749 

0.748 

0.724 

0.711 

0.707 

0.75 

0.744 

0.743 

0.716 

0.711 

0.709 

LibSVM 0.725 

0.708 

0.702 

0.605 

0.605 

0.605 

0.706 

0.676 

0.664 

0.703 

0.658 

0.637 

0.724 

0.707 

0.701 

0.692 

0.67 

0.661 

Decision Stump 0.758 

0.579 

0.491 

0.655 

0.577 

0.516 

0.759 

0.576 

0.484 

0.765 

0.574 

0.48 

0.76 

0.577 

0.487 

0.739 

0.576 

0.491 

Random Forest 0.731 

0.729 

0.729 

0.589 

0.589 

0.588 

0.732 

0.731 

0.73 

0.701 

0.699 

0.698 

0.729 

0.727 

0.726 

0.696 

0.695 

0.694 

MultiBoostAB 0.758 

0.579 

0.491 

0.628 

0.628 

0.628 

0.759 

0.579 

0.49 

0.765 

0.574 

0.48 

0.76 

0.577 

0.487 

0.734 

0.587 

0.515 

Conjunctive 

Rule 

0.758 

0.579 

0.491 

0.622 

0.582 

0.544 

0.759 

0.576 

0.484 

0.765 

0.574 

0.48 

0.76 

0.577 

0.487 

0.732 

0.577 

0.497 

 

Since Naïve Bayes clearly gives us the best results on the F score, all further experiments 

to explore the impact of various features are conducted with this algorithm.  

3-4-3 Features 

Table 2 shows the impact of different feature types (Section 3-3-2) as well as the impact 

of selecting different top N features on the sentence classification task. 
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Table 2: Naive Bayes classification with different features 

 Features 300 1000 2000 6000 

1 All Words 0.729 

0.724 

0.722 

0.753 

0.749 

0.748 

0.768 

0.765 

0.764 

0.783 

0.78 

0.779 

2 1 + Stemming 0.731 

0.727 

0.726 

0.756 

0.752 

0.751 

0.769 

0.766 

0.765 

0.779 

0.775 

0.774 

3 1 + remove stop words 0.727 

0.721 

0.719 

0.752 

0.748 

0.747 

0.769 

0.766 

0.765 

0.782 

0.779 

0.778 

4 1 + 2 + 3 0.731 

0.727 

0.726 

0.756 

0.752 

0.751 

0.769 

0.766 

0.765 

0.779 

0.775 

0.774 

5 MeSH terms 0.604 

0.604 

0.603 

0.604 

0.603 

0.603 

0.605 

0.605 

0.604 

0.606 

0.605 

0.605 

6 1 + number of words 0.722 

0.716 

0.714 

0.751 

0.746 

0.744 

0.77 

0.766 

0.765 

0.78 

0.776 

0.776 

7 1 + Length of the 

sentence 

0.724 

0.718 

0.716 

0.752 

0.747 

0.746 

0.768 

0.765 

0.764 

0.78 

0.776 

0.776 

8 1 + Patterns 0.726 

0.723 

0.721 

0.752 

0.749 

0.748 

0.768 

0.766 

0.766 

0.78 

0.779 

0.778 

9 Bigram of words 0.707 

0.692 

0.686 

0.724 

0.711 

0.707 

0.739 

0.727 

0.723 

0.757 

0.748 

0.745 

10 Trigram of words 0.687 

0.65 

0.633 

0.715 

0.686 

0.675 

0.721 

0.698 

0.689 

0.729 

0.709 

0.703 

11 1 + 9 + 10 0.722 

0.712 

0.709 

0.737 

0.726 

0.722 

0.748 

0.736 

0.733 

0.764 

0.753 

0.751 

12 1 + 3 + 9 + 10 0.724 

0.712 

0.708 

0.743 

0.73 

0.727 

0.755 

0.744 

0.741 

0.774 

0.764 

0.762 
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13 3 + 9 0.713 

0.689 

0.68 

0.723 

0.705 

0.698 

0.731 

0.717 

0.713 

0.75 

0.736 

0.732 

14 POS 0.726 

0.721 

0.72 

0.75 

0.744 

0.743 

0.767 

0.762 

0.761 

0.776 

0.772 

0.771 

15 1 + Relation count 0.728 

0.723 

0.722 

0.753 

0.749 

0.748 

0.767 

0.763 

0.763 

0.782 

0.779 

0.778 

 

 

3-5 Discussion 

In this section, we discuss sentence selection component’s methods, features, and 

evaluation resources. We present ideas of improving the performance by analysis the 

results we obtained in this task. 

Features contributions 

As we discussed in the motivation section, we explored the gold standard sets and 

observed 8 different situations in text when a given sentence may not need citations. This 

task helped us to acquire list of characteristics of sentences that do not need citations to 

be supported. As we highlighted observed patterns and key words in that section, most of 

the “not needing citations” cases that we detected are very key word sensitive. Sentences 

with words such as following, believe, see, below, there is/are no/not, what, suggest, 

further, and believe are very likely to be identified as “not needing citations”. Results we 

obtained by selecting different combinations of feature are shown in Table 2. Since the 

patterns we observed show that general words have an important role in identifying 

sentence class in this task, weak contribution of structure-based features such as POS 
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tags, and domain specific words such as MeSH terms was expected. Bag of words on the 

other hand showed the best performance. Adding N-grams did not improve the results too 

because sensitive words in this task are not necessarily followed in a single sequence. 

Algorithm selection 

Different kinds of classifiers should be always considered for a comparative study over a 

given dataset. We tried six different classification algorithms and selected Naïve Bayes as 

the best one in the sentence selection for citation finding task. Our study on different 

types of sentences that do not need citations showed that the classification task is mostly 

word based. Independence assumption of Naïve Bayes algorithm fulfills this requirement 

and contributes the best in the task. We think that the independence assumption is the 

reason we obtained better results over SVM which is also a word sensitive algorithm. 

Random forest is a classification method that operates by constructing a multiple of 

decision trees at training time. We receive the second best result in the classification task 

using random forest algorithm. Decision stump on the other hand operates only on one-

l3v3l decision tree. Although decision stump is faster to run in our experiment, random 

forest has a better performance in results because of operating on multiple decision trees. 

MultiBoosting develops a classifier in the form of a committee of subsidiary classifiers. 

Individual output of the committee classifiers combine to create a single classification 

from the committee as a whole, often performed by majority vote. MultiBoostAB 

implements cascade classifier to obtain the final class by voting. This algorithm  is 

known to be sensitive to noisy data. 
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Although rule based algorithms cannot identify many positive instances (low recall), they 

are relatively precise (high precision). Conjunctive rule is a rule based classifier we used 

in sentence selection task. Since our study on “not needing citations” sentence types 

showed sentences are mostly identified by words but not rules, we were expecting the 

minimum contribution from conjunctive rule algorithm. 

Baseline: Random choice algorithm 

0.779 is the best f score obtained using Naïve Bayes algorithm and 6000 most frequent 

words as features. In comparison, we calculated the scores with random choice of the 

class, which is when we randomly assign sentences to one of the two designated classes. 

The results for the random choice evaluation are as follows: 

Accuracy = (4000) / (4000 + 4000) = 0.5 

P1 = (2000) / (2000 + 2000) = 0.5 

R1 = (2000) / (2000 + 2000) = 0.5 

F1 = 2 * (0.5 * 0.5) / (0.5 + 0.5) = 0.5 / 1 = 0.5 

Comparing the results for random choice method with the binary supervised 

classification shows that the Naïve Bayes classification improves the classification results 

more than 50%. 

Noisy gold standard 

In this task, we experimented with many features and algorithms to obtain the best result. 

However, adding more features mostly didn’t result in significant improvements. One 

reason is that the data sets we used to train the system are very noisy. In particular, we 
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observed that while some sentences should have included a citation, the author 

nevertheless did not include it. This could have been due to lack of time, a different point 

of view on whether the sentence requires a citation, or a failure in finding a citation. For 

the purpose of our task, what is worth noting is that the dataset used here is likely to have 

this degree of noise, because of which addition of features that seemed intuitively 

plausible did not improve performance in the end. As future work, we believe that the 

task may benefit from methods such as crowd sourcing to collect gold standard data that 

is more reliably marked for citations. 

Number of semantic role relations as a feature 

We added “number of semantic relations in a sentence” as a feature following the 

intuition that the more relations there are in a sentence, the more likely it may be for 

requiring citations. Although this feature did not help to improve the results any further 

over the words, we think that counting specific relations such as “TREAT_OF” instead of 

all occurring relations may be helpful for discrimination. 

Synonymous expansion and grouping 

Our study on 4 articles (1,250 sentences) and also the results we obtained from the 

classification task show that the task of selecting sentences that need citations to be 

supported is very word sensitive. In the future, we can use tools such as WordNet
1
 to 

expand and group synonymous words. This approach will improve the classification 

results by considering the semantic of words. For example, suggestion sentences are one 

of the types that we observed don’t need citations. Some of the words that indicate this 

sentence type are “suggest” and “recommend”. By grouping these words together, we 

                                                           
1
 http://wordnet.princeton.edu/ 
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will have a stronger learning algorithm that is not mislead by same semantic but different 

characterized words. 

Discourse analysis 

In this study, we are not gaining any information from the relations between the 

sentences. We can have stronger sentence selection methods by considering the 

relationships between sentences using discourse analysis.
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Chapter 4:   

 

 

 

 

Citation Assignment
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In this chapter, we describe the citation assignment component of CiteFinder. Sentences 

received from the sentence selection component are first expanded and then submitted for 

citation extraction, which involves finding relevant citations for the candidate sentence 

using MeSH terms. Articles identified through this MeSH-based search are then ranked 

based on four measures: text search, MeSH search, journal prioritization, and 

epidemiological study design recognition. The final step involves producing snippets for 

the retrieved citations, where a snippet contains the title, the article URL, and a portion of 

the text of retrieved articles to show how the article provides good support for the 

sentence. Snippets are obtained not only from the abstracts, but also from the full text of 

articles. In what follows, we describe the gold standard used to evaluate the task and also 

our methods for each of these subtasks in detail and present results from our experiments. 

4-1 Gold Standard 

Since the sentences in the “needing citations” set have at least one citation, we created a 

gold standard using this set. Although all the sentences seem to be a good candidate for 

the system, we had to filter out some sentences because of the following reasons: 

1. No PMID available [420 sentences removed]: There are a few sentences in 

UpToDate, where, although the authors mentioned a citation or citations for 

the sentences, there is no reference provided on the webpage for the citation. 

These citations may be updated in the future with the correct reference 

provided, but we removed them for now in our evaluation. 

2. No full-text available in our index files [6,844 sentences removed]: We 

obtained the “needing citations” sentences by crawling the articles from 
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UpToDate and extracting the sentences with at least one citation. The 

advantage of using UpToDate is that all the citations in this web site are from 

MEDLINE, which is appropriate for our system because the indexed article 

collection is obtained from the same source. On the other hand, since we are 

interested in using the full text of articles in addition to the abstracts, we had 

to remove the articles for which the full text was not available.  

3. Less than 15 words [87 sentences removed]: Since our algorithms for both 

sentence selection and citation assignment are word sensitive, we only 

selected sentences which had at least 15 words.  For example, partial 

sentences such as “The main changes are” are removed. 

4. Less than 1 MeSH term [2 sentences removed]: Having a minimum of 1 

MeSH term guarantees that the citation extraction component can create a 

query of at least one MeSH term to search for in the MeSH field of Lucene’s 

index. Thus, sentences without any MeSH terms were removed. 

In the end, 404 sentences with a total of 449 citations were selected after filtering for the 

cases described above. Sentences with more than one citation are divided in several 

sentences each with an individual citation in the evaluation. 

4-2 Sentence Expansion 

Because our search approach in citation finding component is very word sensitive, we 

need to ensure that we extract all possible information based on words appearing in the 

input sentences. To maximize the informational match between sentence terms and the 

terms in relevant articles, we use Query Expansion (QE) techniques. Query Expansion is 
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a technique in Information Retrieval that handles the matching problem by enriching the 

user’s query to fully reflect the information in the query. In CiteFinder, we operationalize 

this technique by locating important terms in the original sentence, normalizing them, and 

then expanding them. That is, the sentence goes through following steps: 

- Tokenization: The OpenNLP tokenizer [46]  is applied to tokenize the sentence. 

- Lexical Normalization [47]: Lexical variation refers to the existence of different 

words or phrases expressing the same meaning, either with the same part of 

speech or different parts of speech. Lexical variation can involve multi-word 

terms (e.g. foramina magnum vs. foramen magnum), dash separated terms (e.g. 

inter-montane vs. intermontane), different spellings (copper sulfate vs. copper 

sulphate), or contain other characters (e.g. AAID's vs. AAID). The goal of lexical 

normalization is to replace all variations of a word with one unique form which is 

more likely to be found in a dictionary. Lexical normalization also involves 

lemmatization of the words. Lemmatization helps to match more words during the 

search, thereby increasing recall. 

We use the UMLS Specialist Lexicon 2013, which includes commonly occurring 

English words and biomedical vocabulary, including multi-word terms. The 

lexicon entry for each word records the syntactic, morphological, and 

orthographic information
1
. We obtained a list of 398,836 lexical variations from 

the UMLS, which also provides the normalized form for each variant. For each 

single and multi-word term in the input sentence, extracted as N-grams (N=1 to 5) 

                                                           
1
 http://www.nlm.nih.gov/pubs/factsheets/umlslex.html 

http://www.nlm.nih.gov/pubs/factsheets/umlslex.html
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from the sentence we replace the term with the corresponding normalized form in 

the UMLS lexicon. For example, for a sentence with 10 words, we generate 40 

phrases for normalization, including 10 words as single words, 9 phrases as bi-

grams, 8 phrases as tri-grams, 7 phrases as four-grams, and 6 phrases as five-

grams, and replaced each of the 40 phrases with their corresponding normal form 

in the UMLS lexicon. The process did not remove any stop words, and was 

insensitive to case. 

We also replaced the words with the lexical variation before indexing the articles 

with Lucene. This will allow the search algorithm to find the word and phrases in 

the database. 

- MeSH concept extraction: MeSH is the National Library of Medicine's 

comprehensive controlled vocabulary thesaurus introduced in 1963. MeSH 2013 

consists of 27,149 descriptors [48] in a hierarchical structure that enables 

searching at different levels of specificity. It also contains over 218,000 entry 

terms that are synonyms, alternate forms, and other closely related terms in a 

given MeSH record. We use entry terms to find the most appropriate MeSH 

heading. For example, " Heart Decompensation", “Congestive Heart Failure“ and 

“Congestive Heart Failure“ are some of entry terms for " Congestive Heart 

Failure". 

Using UMLS, we extracted 27,149 Mesh terms and 191,874 entry terms. We 

extracted word N-grams (n=1 to 5) from the sentence, without removing stop 

words and ignoring case sensitivity, and searched for the N-grams in the list of 



www.manaraa.com

47 
 

 
 

MeSH terms as well as the list of entry term MeSH terms. If entry terms were 

found, the corresponding MeSH terms were added to the tokens in the sentence to 

expand the sentence. We only considered MeSH terms that were not in the stop 

words list and were at least 3 characters in length. 

Apart from the citation extraction component, the added MeSH terms are also 

used for citation ranking (Section 4-4) and for snippet generation (Section 4-5). 

- Abbreviation expansion: Abbreviations are used very frequently in clinical text 

(e.g. “CHF” as the abbreviation for “Congestive Heart Failure”), and as such, 

their identity of form with the corresponding expanded term is critical for the 

search process, in particular for our approach where the search is primarily word-

based. We expanded the sentence by adding the full terms of abbreviations. Two 

abbreviation dictionaries relevant to cardiology were used for this purpose: 

- 140 cardiology abbreviations from Cardiology Articles weblog
1
 

- 121 cardiology abbreviations from NIH
2
 

 A total of 228 abbreviations and their full terms were obtained after removing 

 duplicates, and these were used to expand the sentence with full terms for  any 

 occurring abbreviations. We also added abbreviations of phrases if the 

 expanded phrase is found in the sentence. For example, if a sentence contains 

 “Congestive Heart Failure”, we expand the sentence by adding CHF to the end of 

                                                           
1
 http://cardiology-articles.blogspot.com/2011/01/abbreviations-in-cardiology.html 

2
 http://www.ncbi.nlm.nih.gov/books/NBK2205/ 

http://cardiology-articles.blogspot.com/2011/01/abbreviations-in-cardiology.html
http://www.ncbi.nlm.nih.gov/books/NBK2205/
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the sentence. To find the expanded version of the abbreviations in the sentence, we look 

for 1 to 5 grams of words. 

4-3 Citation Extraction 

After sentences are expanded using the process described above, the next step is to find 

relevant citations for the (expanded) sentences, based on the MeSH terms present in the 

sentence. To build a fast system, we indexed MEDLINE articles with Apache Lucene 

version 3.0.2 [49]. Lucene is an Information Retrieval software library that provides the 

ability for indexing and fast search on texts. 

CiteFinder stores the text, title, publication type, and MeSH terms of each article in the 

Lucene index format. Retrieval of articles for a sentence is done entirely using the MeSH 

terms occurring in the sentence. In particular, articles with at least one MeSH term in 

common with the sentence’s MeSH terms are retrieved during this step. 

4-4 Citation Ranking 

In order to rank the retrieved citations with regard to their importance and similarity with 

the input sentence, four measures are applied: text search, MeSH search, journal 

prioritization, and study design recognition. We use these measures to calculate an article 

relevancy score for each article, then sort the set of retrieved articles using the relevancy 

scores, and finally, select up to 3 of the top scored articles to present to the user. In the 

following, we describe each of these measures and explain how we calculate the 

relevancy score for articles. 
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4-4-1 Measure 1: Text Search 

The text search measure uses the words in the article to measure the similarity between 

the sentence and the article. We use the score calculated by Lucene for searching with the 

expanded sentence as the query. Lucene takes into account both the Boolean Model (BM) 

and the Vector Space Model (VSM) [50]. Documents approved by BM are scored by 

VSM with three metrics: Term Frequency (TF), Inverse Document Frequency (IDF), and 

Number of MeSH terms in an article. 

TF is a measure which shows how many times a word appears in the document. The goal 

of TF is to overcome the drawbacks of the traditional Boolean model which doesn't 

consider term weights in queries. In comparison to the Boolean query with which the 

result set is often either too small or too big, using TF usually gives us more range in the 

ranked results and improves the results by adding more value to the major words of the 

document. 

Traditional IR systems suffer from weighting all the words equally and thus giving more 

value to unimportant and invaluable terms such as stop words. In fact, some words have 

little or no discerning value in the text to indicate relevance to the query. IDF, or Inverse 

Document Frequency, on the other hand, assigns different weights to words based on 

how rare they are. In particular, words which occur in more documents appear to be less 

informative as compared to the words that appear in fewer documents (we consider them 

as keywords). 

The traditional cosine similarity score on query q and document d is calculated by 

following formula: 
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* qi and di are the tf-idf weight of term i in the query q and document d,   

 respectively. 

Using the above formula, the similarity between a sentence and an article is obtained by 

normalizing the length of the document by using unit vectors. This means that articles of 

different sizes are scored solely by word similarity, not by the length. Although for some 

documents, ignoring the length of the articles will not alter the results (for example, if a 

document consists of parts with similar content), the drawback to this approach is that 

larger documents with a lot of words in them are always more likely to rank better.. The 

reason is that longer articles contain more words and therefore have a greater chance of 

being matched with the words in the query. To overcome this problem, a document 

length normalization factor is used in Lucene which normalizes the query-document 

vector to a vector equal to or larger than the unit vector. 

Lucene uses the following formula to rank the documents and fields based on similarity: 
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4-4-2 Measure 2: MeSH Search 

The MeSH search measure shows the semantic similarity of the sentence and articles. We 

create a query of MeSH terms by adding all of the extracted MeSH terms in one string 
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and use the same approach as for text search above to calculate a score by Lucene for this 

measure. We have discussed MeSH extraction technique in section 4-2. 

4-4-3 Measure 3: Journal Prioritization 

The idea behind this measure is that within a specific domain, a citation published in a 

high-quality journal should have a greater chance of obtaining a higher rank than a 

citation with the same score published in a low-quality journal. We have previously 

studied the task of prioritizing cardiology journals and used the obtained formula in that 

study in our system here [51]. In this study, all Medline abstracts retrieved by the 

“Congestive Heart Failure[MeSH Major Topic]” query on PubMed were downloaded. 

Then, using a set of rules [52] to process the XML structured abstracts, 3,443 unique 

email addresses of authors from US organizations were extracted. From this set, 142 

cardiologists were deemed as qualified (namely, with at least 6 years of experience), and 

also available and willing to participate in our survey. 

60 of the top cardiology journals were selected by querying PubMed for “Congestive 

Heart Failure[MeSH Major Topic]” and used to create a list of journals with article count. 

Cardiologists were asked to rate at least 20 of 60 selected journals on a scale of 1 to 5 

(1=least value, 5=highest value) according to their information worth with regard to 

CHF. Table 3 shows the top 10 ranked journals by these cardiologists. 
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Table 3: Top 10 journals selected by 142 cardiologists (rating range is 1-5) 

Journal names Rating Average Response Count 

The New England journal of medicine 4.35 132 

Circulation 4.35 127 

Journal of the American College of Cardiology 

(JACC) 
4.13 127 

JAMA : the journal of the American Medical 

Association 
3.86 124 

Circulation. Heart failure 3.79 124 

Lancet 3.74 126 

JACC. Heart Failure 3.52 104 

European heart journal 3.21 112 

Annals of internal medicine 3.14 118 

Journal of cardiac failure 3.04 117 

 

12 journal-related numeric metrics are considered to create a Multiple Linear Regression 

model and find the best coefficients for a formula to rank the journals. 

1. Impact Factor (IF): This is the number of times that published articles in the past 

two years in a specific journal have been cited by other substantive articles and 

reviews published in the same period of time, over the total number of citable 

articles published by the same journal in the same timeline [53]. 

2. H-Index: An article with an h-index of h has h articles that have at least h citations 

each [54]. The journal h-index can be calculated by sorting all the articles of a 

specific journal from a given year according to the number of times each article is 

cited, and then finding the highest number that is still lower than the 

corresponding ”number of times cited” value [55]. 
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3. SJR: The SCImago Journal Ranking (SJR) uses an algorithm similar to Google’s 

PageRank [56] to measure the average prestige of each paper of a journal [57] to 

indicate the scientific influence of each journal. 

4. Total Docs: This is the total number of all types of documents published in 

article’s journal in a specific year. 

5. Total Refs: This is the total number of references included in the journal’s 

published articles. 

6. 3yr Docs: This is the total number of all types of documents published in the 

article’s journal in the past three years. 

7. 3yr Cites: This is the total number of citations in a specific year, received by the 

journal’s documents published in the past three years. 

8. 3yr Citable: This is the total number of the journal’s citable articles in the past 

three years. 

9. Ref/Doc: This is the average amount of references per document for a specific 

year. 

10. CHF count: This is the number of articles in MEDLINE retrieved by the 

“(Congestive Heart Failure[MeSH Major Topic]) AND "<journal 

name>"[Journal]” query for each journal. 
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11. BJH: The National Library of Medicine has provided an XML file containing 

information about journals
1
. The Broad Journal Heading (BJH) values for each 

article’s journal is extracted from the journal information. If at least one of the 

headings contain “cardiology”, we assign a value of 1, and otherwise 0.  

12. AIM: The Abridged Index Medicus (AIM or "Core Clinical")
2
 contains a list of 

medical science journals. We assign a value of 1 if an article’s journal is in this 

list, and a value 0 if the journal is absent from the list. 

Using the Multiple Linear Regression algorithm and trying all the possible coefficients to 

equalize the calculated value to the corresponding existing value obtained by the 

cardiologists’ survey, a formula was obtained to rank each journal: 

 

 

 

 

 

 

 

                                                           
1
 ftp://ftp.nlm.nih.gov/online/journals/ 

2
 https://www.nlm.nih.gov/bsd/aim.html 

Journal Priority score = 

   0.82640 * SCImago Journal Ranking 

– 0.00377 * Number of articles 

+ 0.00258 * Number of articles for 3 years 

– 0.00190 * Number of cited-articles for 3 years 

– 0.01846 * Number of references per article 

+ 0.00295 * Number of CHF-indexed Medline abstracts 

+ 0.62864 * Is Broad Journal Heading cardiology? 

– 0.32753 * Is Core clinical journal? 
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Table 4 shows the top 4 journals rated by the cardiologists in the survey and a sample 

value of each metric used in the obtained formula (SCImago 2011 is used). 

 

Table 4: top 4 most informative journals and value of selected metrics in the obtained formula 

Journal Name 
The New 

England 

journal of 

medicine 

Circulation Journal of the 

American 

College of 

Cardiology 

(JACC) 

JAMA : the 

journal of the 

American 

Medical 

Association 

SJR 9.74 5.76 7.31 4.839 

Total Docs 1,808 1,094 941 1,236 

3yr Docs 5,445 3,198 2,756 3,790 

3yr Citable 1,844 2,199 1,559 1,177 

Ref/Doc 9.52 13.01 22.9 10.64 

CHF count 576 1,982 1,737 325 

BJH 0 1 1 0 

AIM 1 1 1 1 

 

Our study on 2 UpToDate articles retrieved by the “Heart Failure” query showed that 

94.69% of the citations in high quality articles come from the top 15 ranked journals by 

our obtained formula. Therefore, using this formula to take into account journal priority 

in the citation ranking task is helpful. 

It is worth mentioning that although the formula above is specifically obtained for 

cardiology journals, we have shown that it is generalizable to other topics. In a similar 

experiment for “multiple sclerosis” (MS) as part of the same study, we reported coverage 

of 94.2% of citations by the top 15 ranked MS journals. 

4-4-4 Measure 4: Study Design recognition 

In order to determine the most appropriate evidence for the information content of a 

sentence, it is helpful to understand the basic design of the research studies. The study 
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design refers to the overall strategy that a researcher chooses to integrate the different 

components of the study in a coherent and logical way, thereby ensuring that the research 

problem is effectively addressed. It is well known that the strength of the findings in 

clinical research depends on the study design, following the following order: systematic 

review, randomized controlled trial, multiple time series, nonrandomized trial, cohort, 

case-control, time series, cross-sectional, and case series [5]. Figure 4 demonstrates the 

weight levels, ranging from 9 to 1, assigned to each study design type, respectively, to 

show the importance of the study strategy in the paper. 
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Figure 4: Study design pyramid and importance of study types 

 

To determine the study type of a citation, we search for each study type in several 

sections of the articles, including publication type, abstract text, MeSH headings, and 

article title. These sections are selected for search because the authors usually mention 

the study type in these sections. Once the study type is identified, a score is assigned 

using the weighting shown in Figure 4. We assign a study design score of zero if none of 

the study type names are found the in article’s sections. 
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Ranking Methods and Results 

We propose two ranking schemes using the measures above to assign ranks to retrieved 

citations. It should be noted that all scores of the measures are normalized to lie within 

the range of 0 to 1. Score normalization is done by considering the minimum and 

maximum score value of each measure using the formula below: 

                 
(               )

(                   )
 

To evaluate ranking methods, we consider the median rank of expected citations for each 

sentence in our gold standard. For example, if there are five sentences in the gold 

standard and the system ranked the corresponding article for each sentence as 56
th

, 3
rd

, 

1
st
, 4

th
, and 33

rd
, the median rank of the system will be 4. 

If the expected citation of a sentence is not retrieved, its rank is assumed to be the worst 

(lowest). So we consider the median rank of all citations in the gold standard, regardless 

of whether the system finds and ranks them or not. In this scenario, we were unable to 

find 15.81% (71 of 449) of the citations, but the currently reported median ranking is 

affected by recall. 

1. Multi-Level Ranking. A multi-level approach ranks the articles in a cascade 

trend. The idea is to rank the articles with one measure, and then split the sorted 

articles into brackets and re-rank the brackets with scores obtained from other 

measures. The more a measure can distinguish between articles and affect the 

ranking results, the sooner we use it in this system. 
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In the first level, the system uses the MeSH measure to extract the citations. Then, 

the text search measure is used to rank the articles in the first level. The reason for 

choosing the text search measure to rank the citations in the first (and most 

beneficial) level of this system is that unlike journal prioritization and study 

design recognition measures that are sentence independent and rank the citations 

regardless of the input sentence, the text search measure gives all the citations the 

chance to be ranked high. In contrast, if Journal prioritization or study design 

recognition was used in the first level, the citations would be ranked exactly the 

same for every sentence. This means that the first level, and therefore the whole 

ranking method, would prevent articles from being ranked within a wide range. 

After extracting and ranking citations via the text search measure, the citations are 

split into N brackets based on their text search score. Note that N is a variable that 

can vary between “1” (all the citations are allocated to one bracket, and 

accordingly, the next ranking algorithm will not be applicable) and “# of retrieved 

citations from last level” (each citation is allocated to one bracket and therefore 

the ranking method to be applied afterwards has no effect). Table 5 shows the 

results with variations of N. Finding the best bracket size for each level is one of 

the challenges of this approach. 

In the next step, the MeSH search measure is used to rank the citations within 

each bracket. Journal prioritization measure is used in the next step to rank the 

articles in each bracket that we obtained from MeSH search scoring. 
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In the last step, the study design recognition measure is used to rank the citations 

in each newly created N bracket to produce the final list of ranked citations. 

Table 5 shows the median rank for the multi-level ranking approach. 

Table 5: Multi-level ranking results 

                                                   # of 

Brackets 

Measures 

10 20 100 

Text search 11 11 11 

Text search and MeSH search 12 11 11 

Text search and journal prioritization 11 10 11 

Text search and study design recognition 10 9 11 

Text search, MeSH, journal prioritization, 

and  study design recognition 
11 11 11 

 

The results – as we expected – show that none of the three measures following the 

text search measure add significantly to the performance of the text search 

measure.  

2. Weight Ranking. In the second approach, the final score is calculated using the 

following formula: 

Score = (Text search weight * Text search score) + (MeSH search weight * MeSH search 

score) + (Journal prioritization weight * Journal Prioritization score) + (Study Design 

recognition weight * Study Design recognition score) 
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The idea behind the formula is to find the measures that statistically contribute to 

improving the results, and then find the best coefficients (weights) for each measure’s 

score that maximizes the results (i.e., minimizes the median rank in this system). 

As the first step, we obtained the median rank score for each measure individually. 

Table 6 shows that as expected, the text search measure contributes most to the 

ranking. As such, we use this measure as foundation and give it a coefficient of 1 in 

the formula.  

Table 6: Median rank for each measure individually 

Measure Median rank 

Text search 11 

MeSH search 202 

Journal prioritization 300 

Study design recognition 243 

 

Next, we combined other measures with the text search measure to determine which 

one to use in the formula. 

In the first experiment, we attempted to find the best coefficient for MeSH search 

when the text search coefficient is 1. A range of coefficients between 0 and 2 were 

explored, and the results indicated 0.5 as the best weight for MeSH search. Table 7 

illustrates these results. 

Table 7: MeSH search coefficient impact on text search ranking (text search=1) 

MeSH search Coefficient 0 0.2 0.3 0.4 0.45 0.5 0.55 0.6 1 

Median Rank 11 10 11 10 10 10 10 11 15 
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We ran the same experiment to find the most contributing coefficient for journal 

prioritization on text search ranking. Table 8 demonstrates the results we achieved, 

with 0.35 as the best coefficient for the journal prioritization measure. 

Table 8: Journal prioritization coefficient impact on text search ranking (text search=1) 

Journal prioritization coefficient 0 0.2 0.3 0.35 0.4 0.5 1 

Median Rank 11 9 8 7 8 8 15 

 

Finally, we found 0.75 as the best coefficient for the study design recognition score 

with the same procedure as above. Table 9 shows the results. 

Table 9: Study design recognition coefficient impact on text search ranking (text search=1) 

Study design recognition coefficient 0 0.3 0.5 0.6 0.7 0.75 0.8 0.9 1 1.2 1.5 

Median Rank 11 8 8 8 7 7 7 8 8 10 12 

 

In order to select the measures that show statistically significant improvement on the 

text search ranking, we calculated the p-value for each of the results we obtained 

from the best contributing coefficient of each measure. P-value is a measure of 

statistical significant, obtained with p equal to or less than 0.01. To calculate the p-

value for the difference in the results of a pair of measures, we used a bootstrapping 

method to draw 404 sentences randomly with replacement from the +citations set. We 

ran the text 500 times and stored the median ranks for each pair of measures. Table 

10 shows the p-values calculated on the results of 500 runs. 
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Table 10: p value of combination of best coefficient of text search measure with other measures 

measures P value 

Text search = 1 and MeSH search = 0.5 = 0.09852 

Text search = 1 and journal prioritization = 0.35 < 2.2e-16 

Text search = 1 and study design recognition = 0.75 < 2.2e-16 

 

The results show that although the contribution of MeSH search is not significant for 

ranking, the improvements seen with journal prioritization and study design 

recognition are statistically significant. Therefore, we disregard the MeSH search 

measure from our formula and used the best coefficient of study design recognition 

(0.75) as constant to obtain the best coefficient for journal prioritization measure. 

Table 11 shows that the best coefficient for journal prioritization to improve the 

ranking is 0.45. 

Table 11: Journal prioritization coefficient impact on text search and study design recognition ranking (text 

search=1, study design recognition=0.75) 

Journal prioritization coefficient 0 0.2 0.4 0.45 0.5 0.6 0.7 0.9 

Median Rank 7 6 4 4 4 5 6 8 

 

Thus, after studying all the four measures and finding the best coefficients for the 

measures, we obtain the following formula to rank the articles: 

       (                     )   (                                   )

  (                                     ) 

4-5 Snippet Generation 

Snippets are small pieces of content from retrieved documents that enable users to 

quickly observe the similarity of their query to each retrieved document. Snippets in 
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CiteFinder consist of one to three non-adjacent sequences of words from the extracted 

article that have the strongest contribution in the process of document retrieval for the 

given sentence. We also add the title and the URL of the articles to the snippet text. 

A query made by a disjunction of words in the expanded sentence is given as input to 

Lucene and a search is executed only on the text of extracted articles to find the best 

fragments of text using proximity algorithms. In this step, we also eliminate articles for 

which the system was not able to extract any snippets. Although removing such articles 

can lead to a decrease in recall, it does guarantee that users will be presented with results 

in a consistent way, in particular with regard to the inclusion of explanatory content 

alongside the articles. 

For snippet generation, we also explored whether using the full text for extracting 

snippets is better than using the abstract. The experiment on the gold standard indicated 

that when CiteFinder uses the full-text, it is able to extract at least one high quality 

snippet (two or three fragments of text) for 99.73% of citations (377 out of 378 relevant 

extracted and ranked citations). On the other hand, when the system looks for snippets in 

an abstract, it extracts high quality snippets for only 24.20% of the citations. 

Furthermore, for the 929020 articles that CiteFinder retrieves during the citation 

extraction task (Section 4-3) for all 404 sentences in +citations set, we found that the 

system could not generate any snippet from the abstracts for 24.91% (231488) of the 

articles, whereas this is true for only 0.02% (212) when the full text is used.  Therefore, 

our study indicates that using the full text over abstracts in the snippet generation task 

increases the recall in both extracting high quality snippets for correctly retrieved 

citations, as well as in extracting at least one snippet for any retrieved citation. Although 
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we cannot compare the quality of snippet generation between abstracts and full text, we 

expect higher quality snippet generation from the full text. 

4-6 Sentence Selection and Citation Assignment 

In order to evaluate the two main components of the system together (sentence selection 

and citation assignment), we created a new gold standard system. To consider the 

independence paradigm in machine learning based approaches, we removed those 

sentences that were used for training during sentence selection, from the selected gold 

standard sets in the citation assignment component. 270 of 404 sentences with citations 

and 12,112 of 14,344 sentences without citations were thus retained in the new 

independent gold standard sets. 

Then, we applied the sentence selection system on the candidate sentences in each set. 

257 of 270 and 6,525 of 12,112 sentences in +citations and –citations sets, respectively, 

have been identified as sentences that need citations. 

To evaluate the overall system, we ran the citation assigner system on the newly obtained 

+citations set and got the median rank of 12. This shows that 4.81% (13 out of 270) of 

the +citations sentences that were misidentified by the sentence selection system, did not 

affect the results significantly in the end. In other words, applying sentence selection on 

sentences that actually need citations, removes some of the sentences that the citation 

assignment component is not able to find very good citations for anyway. 

We cannot run the system on the –citations set because, obviously, we do not have 

citations for the sentences in this set to evaluate the end results. But applying sentence 
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selection on this set shows that it successfully removed about half of the sentences from 

the primary –citations set. 

4-7 Discussion 

In this section, we analyze the citation assignment component and its subcomponents. We 

discuss areas where the system does not perform very well and ideas for improvement. 

Multi-level approach 

We implemented both multi-level and weight ranking algorithms to rank the citations. 

Results show more improvement in the weight-ranking algorithm because of the 

flexibility of this approach to change the effectiveness of the measures. On the other 

hand, the multi-level approach is sensitive to the number of results retrieved by 

CiteFinder. In cases where the number of retrieved articles is not considerably larger than 

the number of brackets, the system will not actually utilize the second- or third-level 

measures. 

MeSH Accessibility 

We use MeSH terms in the citation extraction component to extract the articles with at 

least one MeSH term in common with the sentence. All the articles that we have in our 

corpus are extracted from PubMed or PubMed Central, which provide MeSH terms for 

the articles. CiteFinder’s limitation is that if we want to expand the corpus to cover more 

articles from mentioned sources, we will need to use a MeSH extractor program to pull 

out and index the MeSH terms from the articles. Although we are currently extracting 

MeSH terms from sentences in our system by using string matching methods, this method 

is not applicable to extract the MeSH terms of articles. More advanced methods are 
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needed to identify the MeSH terms that represent the whole article, not every sentence 

individually. 

Journal Priority Measure 

We studied 23 sentences related to heart failure with 31 citations. The study shows that 

31% of retrieved articles (12,362 of 39,839) were not from the 63 journals we already 

have. Having a list of important Heart Failure–related journals will automatically 

guarantee that many unavailable journals are not related to the query. Even though we 

should assign a score of zero to them, having a complete list of journals can improve the 

system. 

Study Design 

We assigned weights of 1 through 9 to different study design types. Machine Learning 

algorithms can be applied to assign more accurate and meaningful weights to the 

elements. 

Proposition identification 

Since citations are retrieved solely on a MeSH term-based search, the system is not 

sensitive to the fact that a retrieved citation may actually be contradicting the statement of 

the sentence. In general, the method for citation extraction should ideally determine what 

proposition denoted by the sentence needs to be cited, and the search should be 

proposition-based and not term-based. However, when a sentence is complex, containing 

multiple propositions, determining which of the propositions is being cited is not evident, 

so developing this kind of method comes with its own set of challenges. In the future, we 

can implement negation detection methods to at least ensure that a retrieved citation does 

not contradict the input sentence. 
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Reference Article Collection 

The major source of articles collected for the citation assignment task were different heart 

failure related journals accessed via PubMed, from where the articles were downloaded 

with the “Congestive Heart Failure[MeSH Major Topic]” query. Our initial set of 

journals include many top ranked ones related to heart failure, but our final selection was 

limited by the fact that we did not have access to the full text for most of them at the 

University of Wisconsin-Milwaukee (UWM). In the end, we could only retrieve full text 

of 533 articles from two journals for this study. In future work, we will either explore 

resources to purchase subscription to more journals or collaborate with other universities 

or institutions to expand our article collection. 

Corpus independency 

Prior to the work described in this thesis, we had done another study of the citation 

assignment task on a different gold standard and article collection [58]. Here we briefly 

describe the previous study and compare the results with our current results, to show that 

the method of obtaining a formula to rank the citations is not restricted to any specific 

gold standard and collection of articles. We note, though, that most of the resources used 

in the current study, such as MeSH terms, lexicons and abbreviations, have been updated 

since the earlier study. 

We used the same methods to obtain 4,697 MEDLINE articles as the reference 

collection. We also extracted 7,864 sentences referring to 11,778 citations by querying 

“heart failure” on the UpToDate web site. 377 sentences referring to 456 citations were 

finally used for evaluation after applying the filters as described in Section 4-1.  
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In the previous study, we did not consider using the text search measure to rank the 

articles. So only MeSH search, journal prioritization, and study design recognition 

measures are used to obtain the following formula: 

       (                     )   (                                  )

  (                                    ) 

This formula gave us a median rank of 41 in the citation assignment task. Detailed results 

using combinations of measures, methods and evaluation are reported in [58]. Applying 

this formula to the new corpus reported in this thesis, we obtained a median rank of 54. 

This shows that the algorithms we implemented in this project are isolated from the data 

collection and applying them on a new corpus leads to appropriate and similar results.
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Chapter 5:   

 

 

 

 

Conclusion and future work 
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Finding supporting citations for clinical sentences is challenging for clinicians. We 

propose a system (CiteFinder), which, after splitting the input text into sentences and 

identifying “needing citations” sentences, expands the selected sentences, extracts 

relevant citations and ranks them to retrieve the best citation for a given sentence. Our 

system makes it easy to generate documentation for evidence-based content by adding 

citations and enriching clinical content such as articles, summaries and FAQs. 

This study shows that the Naïve Bayes algorithm along with words themselves (without 

stemming or removing stop word or considering n-Grams) as feature are the best 

combination in the sentence classification task to find sentences that need citations. This 

study also demonstrates that using journal priority and study design type will improve the 

text search based results by about 63% (from 11 to 4). We also show that using the full 

text of articles instead of just the abstract text helps in extracting better snippets. 

Generalization 

The proposed system explores methods to find citations for sentences in the Heart Failure 

domain. Further experiments will be required to check the generalizability of the system 

in other domains. 

Text challenger 

As future work, we suggest development of a system that finds articles and snippets that 

contradict the sentences in a given text. This system helps the authors to verify their 

written material before publishing them.
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Appendix: Running Example 

Here we use two running examples to demonstrate input, output and results of the system 

in different steps. We selected two sentences with ranks of below 10 and above 300 to 

represent two scenarios that system leads to good or bad results.  

Example 1 

Input query: 

The largest trial of nesiritide in acute heart failure found that it increased rates of 

hypotension, did not alter rates of death or rehospitalization at 30 days, and 

showed a borderline significant trend toward reducing dyspnea 

Expected citation for this sentence: 

PMID: 

21732835 

Title: 

Effect of nesiritide in patients with acute decompensated heart failure. 

Journal name: 

The New England journal of medicine 

MeSH terms:  

- Acute Disease 

- Aged 
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- Double-Blind Method 

- Dyspnea, drug therapy, etiology 

- Female 

- Heart Failure, complications, drug therapy, mortality 

- Humans 

- Hypotension, chemically induced 

- Intention to Treat Analysis 

- Kidney Diseases, etiology 

- Male 

- Middle Aged 

- Natriuretic Agents, adverse effects, therapeutic use 

- Natriuretic Peptide, Brain, adverse effects, therapeutic use 

- Patient Readmission, statistics & numerical data 

- Recurrence 

Publication type list:  

- Journal Article 

- Multicenter Study 
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- Randomized Controlled Trial 

- Research Support, Non-U.S. Gov't 

Abbreviations found: 

heart failure → HF 

Extracted MeSH terms: 

Nesiritide → Natriuretic Peptide, Brain 

Lexicons replaced: 

heart failure → heart-failure 

largest → large 

found → find 

increased → increase 

rates → rate 

rates → rate 

days → day 

showed → show 

reducing → reduce 

Expanded sentence: 
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The large trial of nesiritide in acute heart-failure find that it increase rate of 

hypotension, did not alter rate of death or rehospitalization at 30 day, and show a 

borderline significant trend toward reduce dyspnea HF natriuretic peptide, brain 

Classified as “needing citations”?: 

yes 

Number of articles extracted: 

3685 

First ranked article only with text search measure (text=1, Mesh=0, Journal=0, Study=0): 

PMID: 

18039381 

Title: 

Outcomes of patients hospitalized for acute decompensated heart failure: 

does nesiritide make a difference? 

Journal name: 

BMC cardiovascular disorders 

MeSH terms: 

- Adult 

- Aged 
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- Aged, 80 and over 

- Drug Costs 

- Female 

- Heart Failure, drug therapy, mortality 

- Hospital Mortality 

- Humans 

- Length of Stay 

- Male 

- Middle Aged 

- Natriuretic Agents, economics, therapeutic use 

- Natriuretic Peptide, Brain, economics, therapeutic use 

- Odds Ratio 

- Retrospective Studies 

- Treatment Outcome 

Publication type list:  

- Journal Article 

- Multicenter Study 
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Rank of corresponding article using the multi-level ranking method (order: text, MeSH, 

Journal, Study design): 

6 

Rank using the text search ranking method (text=1, Mesh=0, Journal=0, Study=0): 

6 

Rank using the obtained formula (text=1, Mesh=0, Journal=0.45, Study=0.75): 

1 

The extracted snippet from full text: 

the Acute Study of Clinical Effectiveness of Nesiritide in decompensate Heart 

Failure (ASCEND- HF ) trial ...). There were no significant difference in rate of 

death from any cause at 30 day (3.6% with nesiritide vs...-reported dyspnea at 6 

and 24 hours, rehospitalization for heart  failure or death from any cause at 30 

The extracted snippet from abstract: 

Nesiritide is approve in the unite state for early relief of dyspnea in patient with 

acute  heart  failure . Previous meta-analysis have raise question regard renal 

toxicity and the mortality associate with this agent 

 

Example 2 

Input query: 
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Among all patients with HF, as many as half have a normal or near normal LVEF 

Expected citation for this sentence: 

PMID: 

12517230 

Title: 

Burden of systolic and diastolic ventricular dysfunction in the community: 

appreciating the scope of the heart failure epidemic. 

Journal name: 

JAMA : the journal of the American Medical Association 

MeSH terms: 

- Aged 

- Cause of Death 

- Cross-Sectional Studies 

- Diastole 

- Echocardiography, Doppler 

- Heart Failure, diagnosis, epidemiology, physiopathology 

- Humans 

- Middle Aged 
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- Prevalence 

- Proportional Hazards Models 

- Survival Analysis 

- Systole 

- Ventricular Dysfunction, epidemiology, physiopathology, 

ultrasonography 

Publication type list:  

- Journal Article 

- Research Support, Non-U.S. Gov't 

- Research Support, U.S. Gov't, P.H.S. 

Abbreviations found: 

heart failure → HF 

Extracted MeSH terms: 

patients 

Lexicons replaced: 

patients → patient 

Expanded sentence: 
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Among all patient with HF, as many as half have a normal or near normal LVEF 

heart failure patients 

Classified as “needing citations”?: 

yes 

Number of articles extracted: 

3683 

First ranked article only with text search measure (text=1, Mesh=0, Journal=0, Study=0): 

PMID: 

19277003 

Title: 

DEFEAT - Heart Failure: a guide to management of geriatric heart 

failure by generalist physicians. 

Journal name: 

Minerva medica 

MeSH terms:  

- Adrenergic beta-Antagonists, therapeutic use 

- Aged 

- Aged, 80 and over 
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- Angiotensin-Converting Enzyme Inhibitors, therapeutic use 

- Body Fluids, physiology 

- Cardiac Output, Low 

- Digoxin, therapeutic use 

- Diuretics, therapeutic use 

- Echocardiography 

- Family Practice 

- Female 

- Heart Failure, diagnosis, etiology, physiopathology, therapy 

- Humans 

- Male 

- Stroke Volume, physiology 

- Vasodilator Agents, therapeutic use 

Publication type list:  

- Case Reports 

- Journal Article 

- Research Support, N.I.H., Extramural 
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Rank of corresponding article using the multi-level ranking method (order: text, MeSH, 

Journal, Study design): 

355 

Rank using the text search ranking method (text=1, Mesh=0, Journal=0, Study=0): 

563 

Rank using the obtained formula (text=1, Mesh=0, Journal=0.45, Study=0.75): 

335 

The extracted snippet from full text: 

Context Approximately half of patient with overt congestive heart  failure (CHF) 

have diastolic... a major criterion if it occur in response to therapy for congestive 

heart  failure (CHF). A patient ... among those with moderate or severe diastolic 

or systolic dysfunction, les than half had recognize 

The extracted snippet from abstract: 

Approximately half of patient with overt congestive heart  failure (CHF) have 

diastolic dysfunction without reduce ejection fraction (EF). Yet, the prevalence of 

diastolic dysfunction and its relation to systolic dysfunction and CHF in the 

community remain undefined 
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